Generalized solutions for quantum mechanical oscillator on Kähler conifold

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2006 J. Phys. A: Math. Gen. 397719
(http://iopscience.iop.org/0305-4470/39/24/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 03/06/2010 at 04:38

Please note that terms and conditions apply.

Generalized solutions for quantum mechanical oscillator on Kähler conifold

Pulak Ranjan Giri
Saha Institute of Nuclear Physics, 1/AF Bidhan-Nagar, Calcutta-700064, India
E-mail: pulakranjan.giri@saha.ac.in

Received 15 March 2006
Published 31 May 2006
Online at stacks.iop.org/JPhysA/39/7719

Abstract

We study the possible generalized boundary conditions and the corresponding solutions for the quantum mechanical oscillator model on Kähler conifold. We perform it by self-adjoint extension of the initial domain of the effective radial Hamiltonian. Remarkable effect of this generalized boundary condition is that at certain boundary condition the orbital angular momentum degeneracy is restored! We also recover the known spectrum in our formulation, which of course corresponds to some other boundary condition.

PACS numbers: $03.65 . \mathrm{Db}, 02.30 . \mathrm{Ik}$

1. Introduction

Quantum oscillator is an important model in various branches of physics, i.e., quantum mechanics, quantum field theory, string theory and gravity due to its exact solvability and overcomplete symmetry. The symmetry is manifested through angular momentum degeneracy of the energy spectrum. It is also possible to separate the differential equation with respect to variables in few coordinate systems. The overcomplete symmetry let the harmonic oscillator to remain exactly solvable even after some deformation of the potential is made. So, the symmetry is the prime issue which gives the harmonic oscillator such a status in different fields of study. But in quantum mechanical oscillator on Kähler conifold [1], proposed in [2], on the other hand this symmetry is generally broken. It is an important model nevertheless, because it is solvable and it is defined on Kähler conifold, which is a curved space. In string theory and gravity, Kähler space [3, 4] gets immense importance. It is a four-dimensional quantum oscillator on the (ν, ϵ) parametric family of Kähler conifolds related to the complex projective space $C P^{2}$ for $v=1$ and $\epsilon=1$ and four-dimensional Lobacewski space \mathcal{L}_{2} for $v=1$ and $\epsilon=-1$.

Now, the question is whether it is possible to retain the degeneracy of angular momentum in the energy spectrum of the oscillator defined in [2]. The answer is yes! In our present
work, we are going to address this issue. We will basically perform a one-parameter family of self-adjoint extension [5] of the initial domain of the radial Hamiltonian of the harmonic oscillator [2] by von Neumann method [5]. This will help us to construct a generalized boundary condition. We will show that for a particular value of the extension parameter we can in fact recover the angular momentum degeneracy in the energy spectrum. Not only that, it is also possible to get the previously obtained result [2] for another value of the parameter and other results.

However, the importance of self-adjointness of an operator is far fundamental. As we know the evolution of a quantum system is dictated by unitary group and the generator of this group is the Hamiltonian itself. According to Stone's theorem [5], generators of unitary group (in this case Hamiltonian) should be self-adjoint. So, for a non-self-adjoint operator we should search for a self-adjoint extension if possible. If the system has many self-adjoint extensions then different self-adjoint extensions should unveil different physics for the system.

The paper is organized as follows: in section 2 , we discuss about the quantum mechanical oscillator on Kähler conifold. In section 3, we perform the self-adjoint extension of the radial Hamiltonian and we make some observations for some particular value of the extension parameter ω_{0}. Here, we show that it is actually possible to retain degeneracy in the energy spectrum (symmetry of the system). We discuss in section 4.

2. Quantum mechanical oscillator on Kähler conifold

The Hamiltonian for the system is given by

$$
\begin{equation*}
\widehat{\mathcal{H}}=-\hbar^{2} g^{a \bar{b}} \partial_{a} \partial_{\bar{b}}+V_{\text {osc }}, \tag{2.1}
\end{equation*}
$$

where the metric is of the form

$$
\begin{equation*}
g_{a \bar{b}}=\frac{v r_{0}^{2}(z \bar{z})^{v-1}}{2\left(1+\epsilon(z \bar{z})^{v}\right)}\left(\delta_{a b}-\frac{1-v+\epsilon(z \bar{z})^{v}}{z \bar{z}\left(1+\epsilon(z \bar{z})^{v}\right)} \bar{z}^{a} z^{b}\right), \tag{2.2}
\end{equation*}
$$

and the oscillator potential is given by

$$
\begin{equation*}
V_{\mathrm{osc}}=\omega^{2} g^{\bar{a} b} \partial_{\bar{a}} K \partial_{b} K=\frac{\omega^{2} r_{0}^{2}}{2}(z \bar{z})^{v} \tag{2.3}
\end{equation*}
$$

K the potential of the Kähler structure is given by

$$
\begin{equation*}
K=\frac{r_{0}^{2}}{2 \epsilon} \log \left(1+\epsilon(z \bar{z})^{v}\right), \quad \quad v>0, \quad \epsilon= \pm 1 \tag{2.4}
\end{equation*}
$$

In order to investigate the maximum possible solutions of the problem we need to consider the eigenvalue problem, which is

$$
\begin{equation*}
\widehat{\mathcal{H}} \Psi=E \Psi . \tag{2.5}
\end{equation*}
$$

Equation (2.5) can be separated out in spherical coordinates
$z^{1}=r^{\frac{1}{v}} \cos \frac{\beta}{2} \exp \left[\frac{\mathrm{i}}{2}(\alpha+\gamma)\right], \quad z^{2}=-\mathrm{i} r^{\frac{1}{v}} \sin \frac{\beta}{2} \exp \left[-\frac{\mathrm{i}}{2}(\alpha-\gamma)\right]$,
if we consider the trial wavefunction of the form

$$
\begin{equation*}
\Psi=\psi(r) D_{m, s}^{j}(\alpha, \beta, \gamma) \tag{2.7}
\end{equation*}
$$

Here $\alpha \in[0,2 \pi), \beta \in[0, \pi]$ and $\gamma \in[0,4 \pi)$, and r is a dimensionless radial coordinate taking values in the interval $[0, \infty)$ for $\epsilon=+1$ and in $[0,1]$ for $\epsilon=-1$. In the Wigner function $D_{m, s}^{j}(\alpha, \beta, \gamma), j, m$ denote orbital and azimuthal quantum numbers
and corresponding operators are $\widehat{J}^{2}, \widehat{J}_{3}$ respectively, while s is the eigenvalue of the operator \widehat{J}_{0}.

$$
\begin{align*}
& \widehat{J}_{0} \Psi=s \Psi \tag{2.8}\\
& \widehat{\mathbf{J}}^{2} \Psi=j(j+1) \Psi, \quad \widehat{J}_{3} \Psi=m \Psi \tag{2.9}\\
& m, s=-j,-j+1, \ldots, j-1, j \quad \text { where } \quad j=0,1 / 2,1, \ldots \tag{2.10}
\end{align*}
$$

The volume element reads

$$
\begin{equation*}
\mathrm{d} V_{(4)}=\frac{\nu^{2} r_{0}^{4}}{32} \frac{r^{3}}{\left(1+\epsilon r^{2}\right)^{3}} \sin \beta \mathrm{~d} r \mathrm{~d} \alpha \mathrm{~d} \beta \mathrm{~d} \gamma \tag{2.11}
\end{equation*}
$$

Separating the differential equation, we get the radial eigenvalue equation of the form

$$
\begin{equation*}
H(r) \psi(r)=E \psi(r) \tag{2.12}
\end{equation*}
$$

where

$$
\begin{align*}
H(r)= & -\frac{\hbar^{2}\left(1+\epsilon r^{2}\right)^{2}}{2 r_{0}^{2}} \\
& \times\left[\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{3+\epsilon r^{2}}{1+\epsilon r^{2}} \frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}+\frac{\epsilon \omega^{2} r_{0}^{4}}{\hbar^{2}\left(1+\epsilon r^{2}\right)^{2}}-\frac{\epsilon \delta^{2}}{1+\epsilon r^{2}}-\frac{4 v j(j+1)+4(1-v) s^{2}}{v^{2} r^{2}\left(1+\epsilon r^{2}\right)}\right] . \tag{2.13}
\end{align*}
$$

We now move to the next section to discuss the self-adjointness of the radial Hamiltonian $H(r)$ of equation (2.13).

3. Self-adjointness of the radial Hamiltonian

The effective radial Hamiltonian $H(r)$, equation (2.13), is formally self-adjoint, but formal self-adjointness does not mean that it is self-adjoint on a given domain [6]. This operator $H(r)$ belongs to unbounded differential operator defined on a Hilbert space. As we have mentioned in our introduction that we will perform self-adjoint extension of the operator $H(r)$ by von Neumann's method [5], so for the shake of completeness here we briefly review the von Neumann method.

Let us consider an unbounded differential operator T defined over a Hilbert space \mathcal{H} and consider a domain $D(T) \subset \mathcal{H}$ for the operator T such that it becomes symmetric on the domain $D(T) \subset \mathcal{H}$. Note that the operator T is called symmetric or Hermitian if $(T \phi, \chi)=(\phi, T \chi) \forall \phi, \chi \in D(T)$, where (.,.) is the inner product defined over the Hilbert space \mathcal{H}. Let $D\left(T^{\dagger}\right)$ is the domain of the corresponding adjoint operator T^{\dagger}. The operator T is self-adjoint iff $T=T^{\dagger}$ and $D(T)=D\left(T^{\dagger}\right)$.

We now state the criteria of self-adjointness of a symmetric operator T according to von Neumann method. We need to find out the deficiency subspaces (it is actually a null space) $D^{ \pm} \equiv \operatorname{Ker}\left(\mathrm{i} \mp T^{\dagger}\right)$ and the deficiency indices $n^{ \pm}(T) \equiv \operatorname{dim}\left(D^{ \pm}\right)$. Depending upon $n^{ \pm}, T$ is classified as [5]
(1) T is essentially self-adjoint if $n^{+}=n^{-}=0$;
(2) T has an n-parameter family of self-adjoint extension if $n^{+}=n^{-}=n \neq 0$;
(3) T has no self-adjoint extension if $n^{+} \neq n^{-}$. In this case, T is called maximally symmetric.

We now return to the discussion of our effective radial differential operator $H(r)$. This operator is symmetric in the domain
$D(H(r))=\left\{\phi(r): \phi(r)=\phi^{\prime}(r)=0\right.$, absolutely continuous, square integrable over the full range with measure $\mathrm{d} \mu\}$,
where $\mathrm{d} \mu=\frac{r^{3}}{\left(1+\epsilon r^{2}\right)^{3}} \mathrm{~d} r, \phi^{\prime}(r)$ is the derivative of $\phi(r)$ with respect to r. The domain of the adjoint operator $H^{\dagger}(r)$, whose differential expression is same as $H(r)$ due to formal self-adjointness, is given by
$D^{\dagger}(H(r))=\{\phi(r)$: absolutely continuous, square integrable over the full range with

$$
\begin{equation*}
\text { measure } \mathrm{d} \mu\} \tag{3.2}
\end{equation*}
$$

$H(r)$ is obviously not self-adjoint [5], because

$$
\begin{equation*}
D(H(r)) \neq D\left(H^{\dagger}(r)\right) \tag{3.3}
\end{equation*}
$$

So, we may ask whether there is any possible self-adjoint extension [5] for the problem? To answer this question we need to investigate whether there is any square-integrable solution for the differential equations

$$
\begin{equation*}
H(r)^{\dagger} \phi^{ \pm}= \pm \mathrm{i} \phi^{ \pm} \tag{3.4}
\end{equation*}
$$

Equation (3.4) can be transformed into hypergeometric [7] differential equation upon transformation

$$
r= \begin{cases}\tan \theta, & \text { for } \quad \epsilon=1 \tag{3.5}\\ \tanh \theta, & \text { for } \quad \epsilon=-1\end{cases}
$$

and taking the trial solution of the form

$$
\phi^{ \pm}= \begin{cases}\sin ^{j_{1}-1} \theta \cos ^{\delta} \theta \psi^{ \pm}, & \text {for } \epsilon=1 \tag{3.6}\\ \sinh ^{j_{1}-1} \theta \cosh ^{-\delta-2 a^{ \pm}} \theta \psi^{ \pm}, & \text {for } \epsilon=-1\end{cases}
$$

The transformed differential equation is given by

$$
\begin{equation*}
t(1-t) \frac{\mathrm{d}^{2} \psi^{ \pm}}{\mathrm{d} t^{2}}+\left[c-\left(a^{ \pm}+b^{ \pm}+1\right) t\right] \frac{\mathrm{d} \psi^{ \pm}}{\mathrm{d} t}-a^{ \pm} b^{ \pm} \psi^{ \pm} \tag{3.7}
\end{equation*}
$$

where
$a^{ \pm}=\frac{1}{2}\left(1+j_{1}+\epsilon \delta-\sqrt{\frac{ \pm 2 r_{0}^{2} \mathrm{i}}{\epsilon \hbar^{2}}+4+\frac{\omega^{2} r_{0}^{4}}{\epsilon^{2} \hbar^{2}}}\right)$,
$b^{ \pm}= \begin{cases}-a^{ \pm}+\delta+j_{1}+1, & \text { for } \epsilon=1, \\ a^{ \pm}+\delta, & \text { for } \epsilon=-1,\end{cases}$
$c=j_{1}+1, \quad j_{1}^{2}=\frac{4 j(j+1)}{v}+1-\frac{4(v-1) s^{2}}{v^{2}}, \quad \delta^{2}=\frac{4 s^{2}}{v^{2}}+\frac{\omega^{2} r_{0}^{4}}{\hbar^{2}}$,
$t= \begin{cases}\sin ^{2} \theta, & \text { for } \quad \epsilon=1, \\ \tanh ^{2} \theta & \text { for } \quad \epsilon=-1 .\end{cases}$
The square-integrable solutions of the deficiency space, apart from normalization, are given by
$\phi^{ \pm}= \begin{cases}D t^{\frac{c-2}{2}}(1-t)^{\frac{b^{ \pm}+a^{ \pm}-c}{2}}{ }_{2} F_{1}\left(a^{ \pm}, b^{ \pm}, c ; t\right), & \text { for } \epsilon=1, \\ D\left(\frac{t}{1-t}\right)^{\frac{c-2}{2}}\left(\frac{1}{1-t}\right)^{-\delta-2 a^{ \pm}}{ }_{2} F_{1}\left(a^{ \pm}, b^{ \pm}, c ; t\right), & \text { for } \epsilon=-1,\end{cases}$
where ${ }_{2} F_{1}$ is the hypergeometric function [7].
The existence of these complex eigenvalues of $H(r)^{\dagger}$ signifies that $H(r)$ is not selfadjoint. The solution $\phi^{ \pm}$belong to the null space $D^{ \pm}$of $H(r)^{\dagger} \mp \mathrm{i}$, where $D^{ \pm} \in D^{\dagger}(H)$. The dimension of $D^{ \pm}$is known as deficiency indices $n^{ \pm}$and is defined by

$$
\begin{equation*}
n^{ \pm}=\operatorname{dim}\left(D^{ \pm}\right) \tag{3.10}
\end{equation*}
$$

Since in our case the deficiency indices $n^{+}=n^{-}=1$, we can have a one-parameter family of self-adjoint extension of $H(r)$. The self-adjoint extension of $H(r)$ is given by $H(r)^{\omega_{0}}$ with domain $D\left(H(r)^{\omega_{0}}\right)$, where

$$
\begin{equation*}
D\left(H(r)^{\omega_{0}}\right)=\left\{\psi(r)=\phi(r)+\phi^{+}(r)+\mathrm{e}^{\mathrm{i} \omega_{0}} \phi^{-}(r): \phi(r) \in D(H(r)), \omega_{0} \in \mathbb{R}(\bmod 2 \pi)\right\} \tag{3.11}
\end{equation*}
$$

The bound-state solution of $H(r)^{\omega}$ is given by
$\psi(r)= \begin{cases}C t^{\frac{c-2}{2}}(1-t)^{\frac{b+a-c}{2}}{ }_{2} F_{1}(a, b, c ; t), & \text { for } \epsilon=1, \\ C\left(\frac{t}{1-t}\right)^{\frac{c-2}{2}}\left(\frac{1}{1-t}\right)^{-\delta-2 a}{ }_{2} F_{1}(a, b, c ; t), & \text { for } \epsilon=-1,\end{cases}$
where

$$
\begin{align*}
& a=\frac{1}{2}\left(1+j_{1}+\epsilon \delta-\sqrt{\frac{2 r_{0}^{2} E}{\epsilon \hbar^{2}}+4+\frac{\omega^{2} r_{0}^{4}}{\epsilon^{2} \hbar^{2}}}\right) \\
& b=\left\{\begin{array}{lr}
-a+\delta+j_{1}+1, & \text { for } \epsilon=1, \\
a+\delta, & \text { for } \quad \epsilon=-1,
\end{array}\right. \\
& c=j_{1}+1, \quad t=\left\{\begin{array}{rr}
\sin ^{2} \theta, & \text { for } \epsilon=1 \\
\tanh ^{2} \theta, & \text { for } \epsilon=-1
\end{array}\right. \tag{3.13}
\end{align*}
$$

and C is the normalization constant. To find out the eigenvalue, we have to match the function $\psi(r)$ with the domain (3.11) at $r \rightarrow 0$. In the limit $r \rightarrow 0$,
$\psi(r) \rightarrow \begin{cases}C t^{\frac{c-2}{2}}(1-t)^{\frac{b+a-c}{2}}\left[\Gamma_{1}+(1-t)^{c-a-b} \Gamma_{2}\right], & \text { for } \epsilon=1, \\ C t^{\frac{c-2}{2}}\left[\Gamma_{1}+(1-t)^{1+\frac{c}{2}} \Gamma_{2}\right], & \text { for } \epsilon=-1,\end{cases}$
where

$$
\begin{align*}
\Gamma_{1} & =\frac{\Gamma(c) \Gamma(c-a-b) \Gamma(a+b-c+1) \Gamma(1-c)}{\Gamma(c-a) \Gamma(c-b) \Gamma(b-c+1) \Gamma(a-c+1)} \tag{3.15}\\
\Gamma_{2} & =\frac{\Gamma(c) \Gamma(a+b-c) \Gamma(c-a-b+1) \Gamma(1-c)}{\Gamma(a) \Gamma(b) \Gamma(1-b) \Gamma(1-a)} \tag{3.16}
\end{align*}
$$

and
$\phi^{+}(r)+\mathrm{e}^{\mathrm{i} \omega_{0}} \phi^{-}(r) \rightarrow \begin{cases}D t^{\frac{c-2}{2}}(1-t)^{\frac{b+a-c}{2}}\left[\bar{\Gamma}_{1}+(1-t)^{c-a-b} \bar{\Gamma}_{2}\right], & \text { for } \epsilon=1, \\ D t^{\frac{c-2}{2}}\left[\bar{\Gamma}_{1}+(1-t)^{1+\frac{c}{2}} \bar{\Gamma}_{2}\right], & \text { for } \epsilon=-1,\end{cases}$
where

$$
\begin{align*}
& \bar{\Gamma}_{1}=\frac{\Gamma(c) \Gamma\left(c-a^{+}-b^{+}\right) \Gamma\left(a^{+}+b^{+}-c+1\right) \Gamma(1-c)}{\Gamma\left(c-a^{+}\right) \Gamma\left(c-b^{+}\right) \Gamma\left(b^{+}-c+1\right) \Gamma\left(a^{+}-c+1\right)} \\
& \quad+\mathrm{e}^{\mathrm{i} \omega_{0}} \frac{\Gamma(c) \Gamma\left(c-a^{-}-b^{-}\right) \Gamma\left(a^{-}+b^{-}-c+1\right) \Gamma(1-c)}{\Gamma\left(c-a^{-}\right) \Gamma\left(c-b^{-}\right) \Gamma\left(b^{-}-c+1\right) \Gamma\left(a^{-}-c+1\right)} \tag{3.18}\\
& \bar{\Gamma}_{2}=\frac{\Gamma(c) \Gamma\left(a^{+}+b^{+}-c\right) \Gamma\left(c-a^{+}-b^{+}+1\right) \Gamma(1-c)}{\Gamma\left(a^{+}\right) \Gamma\left(b^{+}\right) \Gamma\left(1-b^{+}\right) \Gamma\left(1-a^{+}\right)} \\
& \quad+\mathrm{e}^{\mathrm{i} \omega_{0}} \frac{\Gamma(c) \Gamma\left(a^{-}+b^{-}-c\right) \Gamma\left(c-a^{-}-b^{-}+1\right) \Gamma(1-c)}{\Gamma\left(a^{-}\right) \Gamma\left(b^{-}\right) \Gamma\left(1-b^{-}\right) \Gamma\left(1-a^{-}\right)} \tag{3.19}
\end{align*}
$$

Now comparing the respective coefficients in equations (3.14) and (3.17), we get the eigenvalue equation

$$
\begin{align*}
f(E) & =\frac{\Gamma(a) \Gamma(b) \Gamma(1-b) \Gamma(1-a)}{\Gamma(c-a) \Gamma(c-b) \Gamma(b-c+1) \Gamma(a-c+1)} \\
& =\frac{\sin (c-b) \pi \sin (c-a) \pi}{\sin a \pi \sin b \pi}=\mathcal{M} \frac{\cos \left(\beta+\omega_{0} / 2\right)}{\cos \left(\alpha+\omega_{0} / 2\right)} \tag{3.20}
\end{align*}
$$

where
$\Gamma\left(a^{ \pm}\right)=\chi_{1} \mathrm{e}^{ \pm \mathrm{i} \alpha_{1}}, \quad \Gamma\left(b^{ \pm}\right)=\chi_{2} \mathrm{e}^{ \pm \mathrm{i} \alpha_{2}}$,
$\Gamma\left(1-a^{ \pm}\right)=\chi_{3} \mathrm{e}^{ \pm \mathrm{i} \alpha_{3}}, \quad \Gamma\left(1-b^{ \pm}\right)=\chi_{4} \mathrm{e}^{ \pm \mathrm{i} \alpha_{4}}$,
$\Gamma\left(c-a^{ \pm}\right)=\lambda_{1} \mathrm{e}^{ \pm \mathrm{i} \beta_{1}}, \quad \Gamma\left(c-b^{ \pm}\right)=\lambda_{2} \mathrm{e}^{ \pm \mathrm{i} \beta_{2}}$,
$\Gamma\left(b^{ \pm}-c+1\right)=\lambda_{3} \mathrm{e}^{ \pm \mathrm{i} \beta_{3}}, \quad \Gamma\left(a^{ \pm}-c+1\right)=\lambda_{4} \mathrm{e}^{ \pm \mathrm{i} \beta_{4}}$,
$\mathcal{M}=\frac{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}{\chi_{1} \chi_{2} \chi_{3} \chi_{4}}, \quad \beta=\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}, \quad \alpha=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$.
The eigenvalue for general value of ω_{0} can be calculated numerically. But we can immediately calculate the eigenvalue analytically at least for some values of the extension parameter ω_{0} in the boundary condition. So, to appreciate constructing generalized boundary condition we now investigate some special cases.

3.1. Case 1

When the right-hand side of equation (3.20) is infinity, we get $a= \pm n$ or $b= \pm n . a=-n$ leads to the eigenvalue, already calculated in [2],
$E_{n, j, s}= \begin{cases}\frac{\hbar^{2}}{2 r_{0}^{2}}\left[\left(2 n+j_{1}+\delta+1\right)^{2}-4-\frac{\omega^{2} r_{0}^{4}}{\hbar^{2}}\right], & \text { for } \epsilon=1, \\ -\frac{\hbar^{2}}{2 r_{0}^{2}}\left[\left(2 n+j_{1}-\delta+1\right)^{2}-4-\frac{\omega^{2} r_{0}^{4}}{\hbar^{2}}\right], & \text { for } \epsilon=-1 .\end{cases}$
The radial quantum number is given by

$$
n= \begin{cases}0,1, \ldots, \infty, & \text { for } \epsilon=1 \tag{3.25}\\ 0,1, \ldots, n^{\max }=[\delta / 2-j-1], & \text { for } \epsilon=-1\end{cases}
$$

For $a=+n$, the energy spectrum will be the same expression (3.24), with n replaced by $-n$. For $b=+n$, the energy spectrum will be

$$
E_{n, j, s}= \begin{cases}\frac{\hbar^{2}}{2 r_{0}^{2}}\left[\left(2 n-j_{1}-1-\delta\right)^{2}-4-\frac{\omega^{2} r_{0}^{4}}{\hbar^{2}}\right], & \text { for } \epsilon=1, \tag{3.26}\\ -\frac{\hbar^{2}}{2 r_{0}^{2}}\left[\left(-2 n+j_{1}+1+\delta\right)^{2}-4-\frac{\omega^{2} r_{0}^{4}}{\hbar^{2}}\right], & \text { for } \epsilon=-1\end{cases}
$$

For $b=-n, n$ in (3.26) will be replaced by $-n$ and radial quantum number n is given in (3.25).

3.2. Case 2

We can also make the right-hand side of equation (3.20) zero, which gives us $c-b= \pm n$ or $c-a= \pm n$. For $c-b=+n$, the energy spectrum becomes,

$$
E_{n, j, s}= \begin{cases}\frac{\hbar^{2}}{2 r_{0}^{2}}\left[\left(-2 n+j_{1}+1-\delta\right)^{2}-4-\frac{\omega^{2} r_{0}^{4}}{\hbar^{2}}\right], & \text { for } \epsilon=1, \tag{3.27}\\ -\frac{\hbar^{2}}{2 r_{0}^{2}}\left[\left(2 n-j_{1}-1+\delta\right)^{2}-4-\frac{\omega^{2} r_{0}^{4}}{\hbar^{2}}\right], & \text { for } \epsilon=-1\end{cases}
$$

For $c-b=-n, n$ in (3.27) will be replaced by $-n$ and radial quantum number n is given in (3.25). For $c-a=n$,

$$
E_{n, j, s}= \begin{cases}\frac{\hbar^{2}}{2 r_{0}^{2}}\left[\left(2 n-j_{1}-1+\delta\right)^{2}-4-\frac{\omega^{2} r_{0}^{4}}{\hbar^{2}}\right], & \text { for } \epsilon=1 \tag{3.28}\\ -\frac{\hbar^{2}}{2 r_{0}^{2}}\left[\left(2 n-j_{1}-1-\delta\right)^{2}-4-\frac{\omega^{2} r_{0}^{4}}{\hbar^{2}}\right], & \text { for } \quad \epsilon=-1\end{cases}
$$

For $c-a=-n, n$ in (3.28) will be replaced by $-n$ and radial quantum number n is given in (3.25).

3.3. Case 3

On the other hand, if we make the right-hand side ± 1, then we get degenerate (degenerate with respect to orbital quantum number j_{1}) eigenvalue. For $c-b=+n+b$ and $c-a=+n+a$, we get

$$
\begin{equation*}
E_{n, s}=\frac{\hbar^{2}}{2 r_{0}^{2}}\left[(n+\delta)^{2}-4-\frac{\omega^{2} r_{0}^{4}}{\hbar^{2}}\right], \quad \text { for } \quad \epsilon=1 \tag{3.29}
\end{equation*}
$$

For $c-b=+n+b$ and $c-a=-n+a$, we get

$$
\begin{equation*}
E_{n, s}=-\frac{\hbar^{2}}{2 r_{0}^{2}}\left[(n+\delta)^{2}-4-\frac{\omega^{2} r_{0}^{4}}{\hbar^{2}}\right], \quad \text { for } \quad \epsilon=-1 \tag{3.30}
\end{equation*}
$$

3.4. Case 4

Even if we can get totally degenerate eigenvalue when $c-b=c-a \pm n$ and the form of the spectrum is given by

$$
\begin{equation*}
E_{n}=\frac{\hbar^{2}}{2 r_{0}^{2}}\left[n^{2}-4-\frac{\omega^{2} r_{0}^{4}}{\hbar^{2}}\right], \quad \text { for } \quad \epsilon=+1 \tag{3.31}
\end{equation*}
$$

For $a+b+c= \pm n$, we get

$$
\begin{equation*}
E_{n}=-\frac{\hbar^{2}}{2 r_{0}^{2}}\left[n^{2}-4-\frac{\omega^{2} r_{0}^{4}}{\hbar^{2}}\right], \quad \text { for } \quad \epsilon=-1 \tag{3.32}
\end{equation*}
$$

We have so far discussed the oscillator, where the dimension of the complex coordinate is $N=2$. But we can generalize it for arbitrary dimensions $N>1$. The arbitrary dimensional conic oscillator Hamiltonian can be constructed from conic oscillator of [8] by making the magnetic field zero. Once the oscillator Hamiltonian is given for general dimensions, the rest of the work of making self-adjoint extension is exactly same as what we have done above.

4. Discussion

In conclusion, we have calculated a generalized boundary condition for the harmonic oscillator [2] and we have shown that this generalized boundary condition can restore the angular momentum degeneracy in energy spectrum for a fixed value of the extension parameter. We have also recovered the result of [2] in our work. Not only that, we have shown that it allows more solutions for different values of the extension parameter.

Acknowledgments

We thank Palash B Pal for comments on manuscript and helpful discussions.

References

[1] Fursaev D V and Solodukhin S N 1995 Phys. Rev. D 522133
[2] Bellucci S, Nersessian A and Yeranyan A 2004 Phys. Rev. D 70045006
[3] Zumino B 1979 Phys. Lett. B 87203
[4] Bowick M J and Rajeev S G 1987 Phys. Rev. Lett. 58535
[5] Reed M and Simon B 1975 Fourier Analysis, Self-Adjointness (New York: Academic)
[6] Dunford N and Schwartz J T 1988 Linear Operators, Spectral Theory, Self Adjoint Operators in Hilbert Space: Part 2 (New York: Wiley-Interscience)
[7] Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover)
[8] Bellucci S, Nersessian A and Yeranyan A 2004 Phys. Rev. D 70085013

